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Tests for variance components based on an unbiased
estimator

Definition

Jordan algebra is closed under operation A ◦ B = AB+BA
2 .

A full characterization of irreducible Jordan algebra gave Jordan,
Neumann i Wigner (1934):

R with addition and multiplication;

Sn - set of symmetric matrices with operation A ◦ B;

quaternions;

special algebra.
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Properties of Jordan Algebra

Let ϑ be Jordan Algebra then:

1 A ∈ ϑ⇒ Ak ∈ ϑ;

2 A,B ∈ ϑ⇒ ABA ∈ ϑ;

3 A,B,C ∈ ϑ⇒ ABC + CBA ∈ ϑ;

4 P2 = P and PV = VP ⇒MϑM ′ = Mϑ is Jordan Algebra;

5 Let Q be orthogonal matrix (QQ′ = I )⇒ QϑQ′ is quadratic
subspace.
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Tests for variance components based on an unbiased
estimator

y
n×1
∼ N (µ1,Σ) ,

where µ ∈ R and Σ = σ2
1V 1 + σ2

2V 2 + σ2
3V 3.

V 1 =

 11′
n1×n1

0

0 0
n2×n2

,V 2 =

 0
n1×n1

0

0 11′
n2×n2

,V 3 =

 I
n1×n1

0

0 I
n2×n2

.
E (yy ′) = µ211′ + Σ = µ211′ + σ2

1V 1 + σ2
2V 2 + σ2

3V 3.
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Tests for variance components based on an unbiased
estimator

1 ϑ = sp {11′,V 1,V 2,V 3} is a quadratic subspace.

2 1
n11′ not commute with V 1 and V 2.

3 Thus according theorem of characterization of Jordan Algebra
it means that ϑ can be represented as Cartesian product of
2× 2 symmetric matrices and σ2

3I .

Remark

Note that P = 1
n11′ does not commute with Σ⇒ for µ does not

exist BLUE.
Moreover there exists BQUE for µ2.
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Tests for variance components based on an unbiased
estimator

H0 : σ2
i = 0 vs. H1 : σ2

i 6= 0

Let y ′Ay be unbiased estimator of σ2
i . Moreover, let A+, A− stand

for positive and negative part of matrix A, respectively.

Remark

For i < k estimator y ′Ay is ”not defined”, that is A = A+ − A−,
where A+,A− 6= 0. Note that

if H0 is true, then E (y ′A+y) = E (y ′A−y),

if H1 is true, then E (y ′A+y) > E (y ′A−y).
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Tests for variance components based on an unbiased
estimator

Test should reject hypothesis

H0 : σ2
i = 0

if statistic

F =
y ′A+y

y ′A−y

is sufficiently large.
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Tests for variance components based on an unbiased
estimator

Normal model has the following form:

y ∼ N

(
Xβ,

k∑
i=1

σ2
i Vi

)

Let us consider three conditions:

1 sp {MV1M, . . . ,MVkM} is Jordan algebra,

2 sp {{MV1M, . . . ,MVkM} \ {MViM}} is commutative Jordan
algebra,

3 F = y ′A+y
y ′A−y

has F-Snedecor distribution under H0 : σ2
i = 0.

Theorem (1996): 1. ∧ 2. ⇒ 3.

Theorem (2002): 1. ∧ 3. ⇒ 2.
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Tests for variance components based on an unbiased
estimator

Theorem

Let assume, that subspace

sp {MV1M, . . . ,MVkM}

is commutative Jordan algebra, while

sp {{MV1M, . . . ,MVkM} \ {MViM}}

is not commutative. Then statistic

F =
y ′A+y

y ′A−y

has generalized F-Snedecor distribution under H0 : σ2
i = 0, where

y ′Ay is BIQUE of parameter σ2
i .
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Special self-adjoint linear operator

Definition

Let A,B,C be matrices with such dimensions that multiplication
ACB is possible. Then:

(A� B)C = ACB.

Remark

Operator � has a following properties:

(A⊗ B)vec(Y ) = vec
(
(B ′ � A)Y

)
;

vec−1 ((A⊗ B)vec(Y )) = (B ′ ⊗ A)Y if A and B are square
matrices and then vec−1 is well defined;

(A� B)(C �D) = AC �DB.
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Block compound symmetric covariance structure in doubly
multivariate data - form

The (mu ×mu)−dimensional BCS covariance structure for
m-variate observations over u factor levels is defined as:

Γ =


Γ0 Γ1 . . . Γ1
...

. . .
...

...
. . .

...
Γ1 Γ1 . . . Γ0


= (Γ0 − Γ1)� I u + Γ1 � Ju
= Γ0 � I u + Γ1 � (Ju − I u) .

The above BCS structure can be also written as a sum of two
mutually orthogonal matrices (i.e. the product of such matrices
is equal to matrix 0):

Γ = (Γ0 − Γ1)�
(
I u −

1

u
Ju

)
+ (Γ0 + (u − 1)Γ1)� 1

u
Ju.
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Block compound symmetric covariance structure in doubly
multivariate data - assumptions

1 Γ0 is a positive definite symmetric m ×m matrix,

2 Γ1 is a symmetric m ×m matrix,

3 − 1
u−1Γ0 ≺ Γ1 which means that: Γ0 + (u − 1)Γ1 is positive

definite matrix,

4 Γ1 ≺ Γ0 which means that: Γ0 − Γ1 is positive definite matrix.

So that the um × um matrix Γ is positive definite
(
for a proof, see

Lemma 2.1 in Roy and Leiva (2011)
)
.
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Model with unstructured mean vector

In this model we assume that covariance structure is BCS and the
mean vector changes over sites or over time points. So µ has
um components.

The BCS model can be written in the following way:

Y
um×n

= [y1, y2, . . . , yn] ∼ N
(
(I um � 1′n)µ,Γum � I n

)
. (1)

It means that matrix Y contains n independent normally
distributed random column vectors which are identically distributed
with mean vector µ and covariance matrix Γ.
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Orthogonal transformation

Let us consider orthogonal transformation I um �Qn on Y um×n.

Proposition

If Var(Y ) = Σ� I with any covariance matrix Σ then the model is
invariant with respect to transformation I �Q.

Proposition

Let ϑΣY
be the space generated by covariance matrices Σ and let

PE(Y ) denote orthogonal projector on the subspace of mean
matrix of a random matrix Y . Moreover let U = Q (Y ), where Q
is an arbitrary orthogonal operator. Then we have

If PE(Y )ΣY = ΣYPE(Y ) then PE(U)ΣU = ΣUPE(U). (2)

If ϑΣY
is a quadratic subspace then ϑΣU

is a quadratic subspace.
(3)
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Orthogonal transformation - special case

For the special case of Q = Q1 �Q2 we get the following:

Lemma

Since the space ϑVar(Y ) generated by covariance matrices Γ� I is

a quadratic subspace and orthogonal projector PE(Y ) = I um � 1
nJn

commutes with covariance matrices, we have:

PE(U) commutes with Var(U) and ϑVar(U) is a quadratic subspace.

Remark

The proof that for the model (1) ϑVar(Y ) is a quadratic subspace
and assumption that commutativity of PE(Y ) holds see [13].
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Orthogonal transformation - step I

Lemma

Let U = (I um �Q2)Y , where Q2 =

[
1√
n

1n
...K1n

]
is Helmert

matrix, so that K ′1n
K1n = I n−1 and K ′1n

1n = 0. Then
U = [u1, . . . ,un] has independent column vectors, where

u1 ∼ N(
√
nµ,Γ) and u i ∼ N(0,Γ) for i = 2, . . . n.

For each u i we define matrix U i of size m × u dividing vector u i

using vec−1 for column vector of dim m × 1 i.e.

U i =
[
u

(i)
1 , . . . ,u

(i)
u

]
with distribution

U1 ∼ N
(√

n
[
µ

(1)
1 , . . . ,µ

(1)
u

]
,Γ
)
,

U i ∼ N (0m×u,Γ) for i = 2, . . . , n.
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Orthogonal transformation - step II

Now we use the same orthogonal mapping for each matrix U i

which according to the previous proposition saves the property of
quadratic subspace generated by covariance structure. Let

W i = (I �Q1)U i , where Q1 =

[
1√
u

1u
...K1u

]
. Each matrix W i

can be expressed as

W i =
[
w

(i)
1 , . . . ,w

(i)
u

]
,

where w
(i)
j is m × 1 vector. On can easily prove that

Var(W i ) = (Γ0−Γ1)�
[

0 0′

0 I u−1

]
+ (Γ0 + (u− 1)Γ1)�

[
1 0′

0 0u−1

]
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Orthogonal transformation - step II

Corollary

Vectors w
(i)
j are independent and

w
(1)
1 ∼ N

√nu u∑
j=1

µj ,Γ0 + (u − 1)Γ1

 ,

w
(i)
1 ∼ N (0,Γ0 + (u − 1)Γ1) for i = 2, . . . , n,

w
(1)
j ∼ N

(
√
nu

u∑
l=1

k l ,j−1µl ,Γ0 − Γ1

)
for j = 2, . . . , u,

where k lj is lj-th element of K1u .

w
(i)
j ∼ N (0,Γ0 − Γ1) for i = 2, . . . , n, j = 2, . . . , u.
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Hypotheses for structure of mean

Remark

According to full characterization of Jordan Algebra, note that
covariance structure is isomorphic to Cartesian product of Jordan
Algebra of n(u − 1) and n full m ×m symmetric matrices Γ0 − Γ1

and Γ0 + (u − 1)Γ1, respectively, see [6].

Now we formulate null hypothesis for structure of mean

H0 : µ1 = µ2 = . . . = µu,

This hypothesis can be written equivalently as

H0 : µ
(c)
2 = µ

(c)
3 = . . . = µ

(c)
u = 0,

where µ
(c)
j =

√
nu
∑u

l=1 k l ,j−1µl .
Following idea of [10] this hypothesis is equivalent

H0 :
u∑

j=2

µ
(c)
j µ

(c)′

j = 0.
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Positive and negative part of estimator

One can prove that quadratic estimator of
∑u

j=2µ
(c)
j µ

(c)′

j is a
function of complete sufficient statistics (see [13]) and has the
following form:

̂u∑
j=2

µ
(c)
j µ

(c)′

j =
u∑

j=2

µ̂
(c)
j µ̂

(c)′

j − (u − 1)Γ̂0 − Γ1. (4)

Note that
u∑

j=2

µ̂
(c)
j µ̂

(c)′

j
df
= (u − 1)∆̂2

is positive part and

(u − 1)Γ̂0 − Γ1 =
u − 1

(n − 1)(u − 1)

n∑
i=2

u∑
j=2

w
(i)
j w

(i)′

j
df
= (u − 1)∆̂1

is negative part of estimator in (4).
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Distribution of positive and negative part of estimator

Under null hypothesis positive part has Wishart distribution and
negative part multiplied by (n − 1) is Wishart distributed with the
same covariance matrix Γ0 − Γ1

(n − 1)(u − 1)∆̂1 ∼Wm ((n − 1)(u − 1),Γ0 − Γ1) ,

(u − 1)∆̂2 ∼Wm (u − 1,Γ0 − Γ1) ,

where ∆̂1 and ∆̂2 are independent.
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Test statistic for F-test

Lemma

If W 1 ∼ Wm(Σ, n1) and W 2 ∼ Wm(Σ, n2) are independent, then
for every fixed vector x 6= 0 ∈ Rm:

T =
n2x
′W 1x

n1x ′W 2x
∼ Fn1,n2 .

Theorem

Under null hypothesis test statistic

T =
x ′
∑u

j=2 µ̂
(c)
j µ̂

(c)′

j x

(u − 1)x ′Γ̂0 − Γ1x
=
x ′∆̂2x

x ′∆̂1x
(5)

has F distribution with (u − 1) and (n − 1)(u − 1) degrees of
freedom for any fixed x .
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Roy’s test

Since the distribution of (5) is the same for any x , we can look for
higher values of T in order to get higher power of the test. Let us
denote

y = ∆̂
1/2

1 x .

This is a regular transformation, since we assume ∆1 > 0. If the
number of degrees of freedom is greater than the dimensionality,
i.e. (n− 1)(u− 1) > m, then also ∆̂1 > 0 with probability 1. That
is why

Tm
df
= max

x
T = max

y

y ′∆̂
−1/2

1 ∆̂2∆̂
−1/2

1 y

y ′y
= λmax

(
∆̂2∆̂

−1

1

)
.
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Test statistic for Roy’s test

Using the Definition 3.7.2 and Equation 3.7.12 of [9], we can tell
that the distribution of

R =

1
(n−1)Tm

1 + 1
(n−1)Tm

is Roy’s largest root distribution with parameters m,
(n − 1)(u − 1), and u − 1 if n − 1 > m. Thus, the hypothesis can
also be tested using critical values of Roy’s distribution.

However, the maximizing vector x is the eigenvector u1

corresponding to the largest eigenvalue, which is no more fixed but
depends on the data. As a consequence, Roy’s test does not
necessarily have higher power than the F-test and performs
better than other ones only when the largest eigenvalue is
substantially greater than the remaining ones.
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Test statistic for likelihood ratio test

LRT for this situation was developed by Fleiss in [4]. The test
statistic is of the form

L =

∣∣∣∆̂1

∣∣∣∣∣∣∆̂1 + 1
n∆̂2

∣∣∣ ,
where 1

n∆̂2 = 1
n(u−1)

∑u
j=2 µ̂

(c)
j µ̂

(c)′

j = 1
u−1X

(
I − 1

uJu
)
X
′
,

X = 1
n

∑n
i=1 Xi , Xi = vec−1y i .

This statistic has under H0 Wilks lambda distribution with
parameters m, u − 1, and (n − 1)(u − 1) if n − 1 > m (compare
with Definition 3.7.1 in [9]). We obtain critical values for both
tests by 1 000 000 simulations using Monte Carlo method.
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Simulation study

In our test statistic we take vector x = 1m. Using argument of
minimal sufficiency we need only to generate independently

w
(1)
2 , . . . ,w

(1)
u according N(0m, Im) and random matrix with

Wishart distribution Wm((n − 1)(u − 1), Im).

In each step of simulation we add randomly chosen vectors

η2, . . . ,ηu to the vectors w
(1)
j for j = 2, . . . , u multiplied by fixed

λ to obtain power function of the test. Here λ is between 0 and
some suitable value Λ such that power is close to 1. Naturally, for
λ = 0 we have null hypothesis. When λ increases then power
should also increase. We have compared powers of all three tests
as a function of λ.
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Figure: n = 25, u = 2,m = 3 and all elements of the contrast vector are
positive
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Figure: n = 10, u = 3,m = 3 and all elements of the contrast vector are
positive
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Figure: n = 25, u = 3,m = 3 and all elements of the contrast vector are
negative
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Figure: n = 25, u = 3,m = 3 and all elements of contrast vector have
different signs
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Hypotheses of covariance structure in double multivariate
data

H0 : Γ1 = 0 vs. H1 : Γ1 6= 0.

Applying the idea in [A. Michalski, R. Zmyślony, Testing
hypotheses for variance components in mixed linear
models,Statistics 27(1996), 297-310] for testing hypothesis under
assumption that all elements of Γ1 are nonnegative or nonpositive.

Lemma

If W 1 ∼Wm(Σ, n1) and W 2 ∼Wm(Σ, n2) (independent) then for
every fixed vector x 6= 0 ∈ Rm:

T =
x ′W 1x

n1

x ′W 2x
n2

∼ Fn1,n2 .
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Hypotheses of covariance structure in double multivariate
data

Proof.

According to well-known theorem if W ∼Wm(Σ, n) then for every
x 6= 0 ∈ Rm:

x ′Wx

x ′Σx
∼ χ2

n.

Now if we calculate ratio of x ′W 1x
n1

and x ′W 2x
n2

we get:

x ′W 1x
n1

x ′W 2x
n2

=
x ′W 1x
n1x ′Σx
x ′W 2x
n2x ′Σx

∼
χ2
n1
n1

χ2
n2
n2

∼ Fn1,n2 .

Roman Zmyślony, Ivan Žežula, Arkadiusz Kozio l Testing hypotheses about structure of mean vector



Hypotheses of covariance structure in double multivariate
data

From [A. Roy, R. Leiva, I. Žežula, D. Klein, Testing the equality of
mean vectors for paired doubly multivariate observations in blocked
compound symmetric covariance matrix setup, Journal of
Multivariate Analysis, 137, 50-60] we get that that matrices:

(n−1)(u−1)∆̃1 = (n−1)(u−1)(Γ̃0−Γ̃1) ∼Wm(Γ0−Γ1, (n−1)(u−1)),

(n−1)∆̃2 = (n−1)(Γ̃0 + (u−1)Γ̃1) ∼Wm(Γ0 + (u−1)Γ1, (n−1))

are independent.
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Negative and positive part of estimator Γ̃1

It is easy to show that:

Γ̃1 =
∆̃2 − ∆̃1

u
.

Under the framework of Michalski and Zmyślony positive part of
Γ̃1 is given by:

Γ̃1+ =
∆̃2

u

and negative part is given by:

Γ̃1− =
∆̃1

u
.
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Exact F test

Noting that estimator of Γ1 is given by:

Γ̃1 = Γ̃1+ − Γ̃1− =
∆̃2 − ∆̃1

u
.

The test statistic:

T =
1′Γ̃1+1

1′Γ̃1−1

is distributed as an F random variable with (n − 1) and
(n − 1)(u − 1) degrees of freedom under the hypothesis
H0 : Γ1 = 0.
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Likelihood ratio test

In the case of the likelihood ratio test (LRT) to verify hypotheses:

H0 : Γ1 = 0 vs. H1 : Γ1 6= 0

there is no need to assume that all elements in matrix Γ1 have the
same sign.

Test statistic for this test has the following form:

L =

∣∣∣ (n−1)(u−1)∆̃1+(n−1)∆̃2

nu

∣∣∣− nu
2

∣∣∣n−1
n ∆̃1

∣∣∣− n(u−1)
2
∣∣∣n−1

n ∆̃2

∣∣∣− n
2

.

Under null hypothesis H0 : Γ1 = 0 statistic −2 ln(L) has

approximately a chi-squared distribution with m(m+1)
2 degrees of

freedom.
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Comparison of power of tests: F and LRT
(all elements in matrix Γ1 are positive)

In order to compare power of both test, assumed that u = 2,
n = 25 and matrices Γ0 and Γ1 are:

Γ0 =

 0.01221 0.02172 0.00901
0.02172 0.07492 0.01682
0.00901 0.01682 0.01108

,

Γ1 =

 0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 0.00807

.
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Comparison of power of tests: F and LRT
(all elements in matrix Γ1 are positive)

For these matrices Γ0, Γ1 and value of u, determined interval for
values of multiplier λ, so that the following two conditions are
satisfied:

1 Γ0 + (u − 1)λΓ1 is positive definite matrix,

2 Γ0 − λΓ1 is positive definite matrix.

These conditions ensure positive definite of matrix Γ.
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Comparison of power of tests: F and LRT
(elements in matrix Γ1 have different signs)

It is worth to analyze case with either negative and positive
elements in matrix Γ1. Intuition suggests that power of F test in
this case should be lower than power of LRT. Two examples in this
case will be considered.

In this example the last element on main diagonal in matrix Γ1 is
multiplied by −1 thus matrix Γ1 is (matrix Γ0, parameters u and n
stay unchanged):

Γ1 =

 0.01038 0.01931 0.00824
0.01931 0.06678 0.01529
0.00824 0.01529 −0.00807

.
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Comparison of power of tests: F and LRT
(elements in matrix Γ1 have different signs)

Now consider second example. This time we assumed that u = 5,
n = 25 and matrices Γ0 and Γ1 are:

Γ0 =

 16.25767 −2.44727 1.2296
−2.44727 20.40595 −4.1875

1.2296 −4.1875 18.56094

,

Γ1 =

 −0.278602 1.87846 1.26189
1.87846 −3.19609 1.11567
1.26189 1.11567 −2.15724

.
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Comparison of power of tests: F and LRT
(matrices Γ0 and Γ1 are scalars)

Let us consider another case. Very special one, because Γ0 and Γ1

are scalars, thus m = 1. Let Γ0 = 2 and Γ1 = 1. Additionally is
assumed that u = 2, and parameter n will be one of values from
set {3, 5, 10, 25}.
Matrix Γ has the following form:

Γ =

[
2 1
1 2

]
.

From conditions of positive definiteness of matrix Γ it is easy to
show that values of multiplier λ should be from interval [−2, 2].
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Test F for single parameters in matrix Γ1

H0 : σ
(1)
ij = 0 vs. H1 : σ

(1)
ij 6= 0

In order to conduct F test for above hypotheses, if considered

parameter is σ
(1)
ii , i = 1, . . . ,m, vectors 1 in formula for value of

F test statistic should be replaced by

e i = (0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , 0)′.

For parameters σ
(1)
ij , i < j , i = 1, . . . ,m, instead of vectors 1 in

formula for value of F test statistic one should insert

e i − e j = (0, . . . , 0, 1︸︷︷︸
ith position

, 0, . . . , −1︸︷︷︸
jth position

, 0, . . . , 0)′.
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Test F for single parameters in matrix Γ1

Matrix with p-values for two sided F test for single parameters in
first presented (all elements in Γ1 are positive) example is: 3.86 ∗ 10−8 2.57 ∗ 10−9 0.0599

1.02 ∗ 10−9 5.43 ∗ 10−8

2.46 ∗ 10−5

.
For significance level 0.05, using Bonferroni correction, p-values
should be compared with:

α0 =
0.05

6
≈ 0.0083
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200 GBP Prize

Let A and B be symmetric, real, nonnegative and not commutative
matrices of n× n sizes. Let define inner product 〈A,B〉 = tr (AB).
Moreover, let for arbitrary symmetric matrix C , matrix C+ be
positive part of real symmetric matrix, what means that
summation in spectral decomposition only for positive values αi .
For matrices A and B and nonnegative x define function:

F (x) = 〈(A− xB)+,B〉 .

Prove that F (x) is a convex function or not for any value of n.

For n = 2 was proved that F (x) is convex function.
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