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A motivating example
Poland (by night - according to NASA)



A closer look at that big spot



The center of Katowice



A typical silesian bus



Need this to travel by mass transit

A ticket issued by Municipal Transport Union of Upper Silesia
(KZK-GOP)



Examples of varying-cost situations

Sampling communication lines

Sampling in auditing

Spatial dispersion (forest �’s, companies, households)

Costs ~ unit size (buildings, cultivation, ecologic assets)

Varying scope of required data (fiscal issues, medicine)

Cluster sampling / Two-stage sampling

Non-respondents to be followed up

Recursive / adaptive sampling



Cost is a useful abstraction
It may include more than money

Other resources may be limited as well

Time

Equipment

Administrative permissions

Here, we shall concentrate on a single resource



Notation

Finite population U = {1, ...,N}

Fixed characteristic y1, ..., yN

Parameter under study y = N−1∑
i∈U yi

Sample s ⊂ U

Sampling design P(s)

1st-order inclusion probability: πi = Pr(i ∈ s)

2nd-order inclusion probability: πij = Pr(i , j ∈ s)



Sample cost

A general definition

The cost Cs of the sample s is the amount of resources spent
to observe desired characteristics of units in s

Assumed model (Skibicki & Wywial 2002,2003)

1 Individual costs c1, ..., cN are associated with units in U

2 Cs =
∑

i∈s ci

3 c1, ..., cN are constant

4 c1, ..., cN are known in advance



Sample cost

Specific model features

Finite population assumed (vs renewal processes)

Individual costs differ (vs most of literature)

Individual costs non-random (vs Khan models)

Individual costs known in advance (vs Pathak/Kremers)

Sample cost Cs generally random

Distribution of Cs depends on P(s)

It may be assessed in advance



SRSWOR
a special case

Fixed sample size n

1st order inclusion probability: πi = n
N

2nd order inclusion probability: πij = n(n−1)
N(N−1)

Sample space given n: Ωn = {s ⊂ U : #s = n}

Size of Ωn: N!
n!(N−n)!

Distribution of Cs: Pr{Cs = a} =
∑

s:Cs=a

P(s)



A little more notation

Assume c1 ≤ ... ≤ cN (no loss of generality)

Let

c =
1
N

∑
i∈U

ci (1)

S2
U(c) =

1
N − 1

∑
i∈U

(ci − c)2 (2)



Cs distribution characteristics:

expectation E(Cs) = nc

variance V (Cs) = n
(
1− n

N

)
S2

U(c)

minimum cmin(n) =
n∑

i=1

ci

maximum cmax (n) =
n∑

i=1

cN−i+1



More notation

Survey budget: L

Budget-use coefficient:

Ws =
Cs

L
(3)

If c1 = ... = cN = c and L = zc for z ∈ Z then L = 1

In general:

cmin(n)

L
= wmin(n) ≤Ws ≤ wmax (n) =

cmax (n)

L
(4)



Example 1

Population of 695 farms in Dabrowa Tarnowska district

Sampling cost proportional to farm area:



Example 1

False assumption: c1 = ... = cN = c

Sample size rule: n = bL
c c

Simplifying to L = nc we get:



Example 1
numbers



Example 2
A simulation study for farm area data



Example 2

Observed frequencies:

For other populations it may be worse.



Interim conclusion

If nothing is done:

deviations in plus:

generate financial losses

may render the survey unfeasible

may force reduction of the sample

lead to ’unofficial’ rejective sampling (and biases)

deviations in minus:

may trigger funding cuts for next edition of the survey

undermine credibility of survey results

suggest that unused funds may improve accuracy



Budget margin
An ad-hoc solution

Budget never exceeded for

nx = max{n : cmax (n) ≤ L} (5)

Equivalent to a margin of funds:

∆ = L− nxc (6)

The way to go ?



Example 3
Farm data again

Calculations for L = α(c1 + ...+ cN):



Example 3
Empirical distribution of Ws

Quantiles of Ws:

For α ≤ 0.2 less than half budget spent in 98% of samples !



Pathak (1976) fixed-cost sampling

Units are drawn

one by one

with equal probabilities

without replacement

while the cumulative cost is lower than L

the unit which breaks this is not included, (at no cost)

Sample (A1, ...,AM)



Pathak fixed-cost sampling
features

Budget never exceeded

Random sample cost

Random sample size M

min(M) and max(M) easily calculated



Example 4
N = 50, c = [1, 2, ..., 50]′, Simulation: 106 samples



Pathak fixed-cost sampling
inclusion probabilities

First-order inclusion probability

πi =
Φi

N!

Second-order inclusion probability

πij =
Φij

N!

where:

Φi - # permutations of U resulting in drawing the i-th unit

Φij - # permutations of U resulting in drawing of (i , j)

Dependent on costs and usually hard to calculate.



Estimation

Values Y1, ...,YM of study variable observed

Inclusion probabilities not known

Computation of Horvitz-Thompson estimator problematic

Pathak’s (1976) unbiased estimator:

Y M =
1
M

M∑
i=1

Yi (7)



Estimation

Its variance:

V (Y M) =
1

2N(N − 1)

∑
i 6=j∈U

(
Λij −

1
N

)
(yi − yj)

2 (8)

where

Λij = E
(

1
M

∣∣∣∣A1 = i ,A2 = j
)

(9)

Variance estimator:

V̂ (Y M) =

(
1
M
− 1

N

)
1

2M(M − 1)

M∑
i 6=j=1

(Yi − Yj)
2 (10)



Example 5

A population of N = 319 KZK-GOP communication lines
Study variable: yearly number of passengers
Sampling cost proportional to yearly vehicle miles driven
Joint distribution of cost vs study variable



Example 5
Estimator accuracy for various budgets (α = L/(c1 + ...+ cN) (Simulation)



Example 6
How the budget is spent ? (SRSWOR, c = [1, ..., 40]′, L = 164)
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A greedy sampling scheme (Gamrot 2015)

For any set Q ⊆ U denote:

U(Q) =

{
i ∈ U −Q : ci ≤ L−

∑
i∈Q

ci

}
(11)

The scheme works as follows:

1 Let s0 = ∅

2 For k = 1,2, ... do the following:

If U(sk−1) is nonempty, then draw an element Ak from it
with equal probabilities and let sk = sk−1 ∪ {Ak}

If in some K -th step U(sk ) is empty then go to step 3

3 The set sK is the sample
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Back to example 5
How are sample sizes distributed in this setup ?

A population of N = 319 KZK-GOP communication lines
Study variable: yearly number of passengers
Sampling cost proportional to yearly vehicle miles driven
Joint distribution of cost vs study variable



Back to example 5
Sample size distributions



Inclusion probabilities

Property 1
Individual first-order inclusion probabilities under greedy
scheme are not lower than those under Pathak scheme

Property 2
Expected sample size under greedy scheme is not lower than
under Pathak scheme

However:
For both schemes probabilities are hard to calculate
For both schemes cheaper units are chosen more often
For the greedy scheme differences are more pronounced



How to estimate the mean ?

For known π1, ..., πN , an unbiased estimator would be:

yHT =
1
N

∑
i∈s

yi

πi
(12)

with the variance:

V (yHT ) =
1

N2

∑
i,j∈U

yiyj

(
πij

πiπj
− 1
)

(13)

and its estimator:

V̂ (yHT ) =
1

N2

∑
i,j∈s

yiyj

πij

(
πij

πiπj
− 1
)

(14)

However π1, ..., πN are not known



Fattorini’s (2006,2009) solution
simulate them

As assumed, individual costs are known

Draw R independent replications of s (same scheme)

Calculate counts of occurences k1, ..., kN

Compute empirical inclusion probabilities π̂1, ..., π̂N

Plug them into estimator:

yEHT =
1
N

∑
i∈s

yi

π̂i
(15)



How to estimate inclusion probabilities ?
Some challenges ...

Estimates must be positive for yEHT ’s moments to be finite

Stopping rule providing desired accuracy is needed

Inclusion of units is not independent

True probabilities often very small



How to estimate inclusion probabilities ?
Some ideas ...

Thompson & Wu (2008)

π̂i =
ki

R
(16)

Fattorini (2006,2009):

π̂iF =
ki + 1
R + 1

(17)

Gamrot (2012): use isotonic regression

Gamrot (2013): use RML

Gamrot (2013): use kernel smoothing

Gamrot (2014): use sampling weight posterior mode/mean



Assessing properties of mean estimators ?
(design-and-randomization-based properties)

Fattorini’s results for π̂iF :

ARB(yEHT ) =
|E(yEHT )− y |

y
≤ 1

(R + 2)π−

|MSE(yEHT )− V (yHT )|
V (yHT )

≤ 9
(R + 2)π−

(
1 +

y2

V (yHT )

)

But what is exact (non-relative) bias ?
And what about other estimators ?



Perhaps a simulation ?

A naive approach:
Find some complete data set with known y -values

Repeat independently H >> 1 times following steps:
1 Draw s from U
2 ’Observe’ study variable in s
3 Generate R >> 1 replications s′1, ..., s

′
R of s

4 Count occurrences of sampled units
5 Calculate estimates of inclusion probabilities
6 Plug everything into yEHT

Examine the empirical distribution of yEHT



Perhaps a simulation ?

The naive approach:
simulates repeated sampling

is easy to justify intuitively

is very simple

However:
the number of sample draws is H · (R + 1)

when H,R >> 1, it may be infeasible

simulating for R = R1, ...,RJ , it is even harder



A better alternative

Consider a random vector Z = [z1, ..., zN ]′ where

zi =

{
0 for i ∈ s
1 for i /∈ s

Consider a random vector W = [w1, ...,wN ]′ where:

wi =
yi

Nπ̂i

W and Z are independent
Components within W are not
Components within Z are not
The H-T estimator is expressed as:

yEHT = W′Z



A better alternative
for assessing the bias

Consequently

E(yEHT ) = E(W′)E(Z)

Simulate independently:

m realizations W1, ...,Wm of W

n realizations Z1, ...,Zn of Z

This requires m · R + n sample draws

Denote Wi = [wi1, ...,wiN ]′, Zi = [zi1, ..., ziN ]′



A better alternative
for assessing the bias

Calculate means

Wm = [w1, ...,wN ] =
1
m

m∑
i=1

Wi

Zn = [z1, ..., zN ] =
1
n

n∑
i=1

Zi

They are respectively unbiased for E(W) and E(Z)

Hence the estimator:

Ê(yEHT ) = W′mZn

is unbiased for E(yEHT )



A better alternative
for assessing the bias

Let CW and CZ are covariance matrices of W and Z

The estimator variance is:

V (Ê(yEHT )) =
1

mn
G1 +

1
n

G2 +
1
m

G3

where

G1 = tr CW CZ , G2 = E(W′)CZ E(W) G3 = E(Z′)CW E(Z)

How to set m, n minimizing the variance ?



A better alternative
for assessing the bias

Covariance matrices are unbiasedly estimated by:

ĈW =

 ĉw1,w1 . . . ĉw1,wN
...

. . .
...

ĉwN ,w1 . . . ĉwN ,wN

 ĈZ =

 ĉz1,z1 . . . ĉz1,zN
...

. . .
...

ĉzN ,z1 . . . ĉzN ,zN


where

ĉwg ,wh =
1

m − 1

m∑
i=1

(wgi − wg)(whi − wh)

ĉzg ,zh =
1

n − 1

n∑
i=1

(zgi − zg)(zhi − zh)

for g,h ∈ U



A better alternative
for assessing the bias

Constants G1,G2,G3 are unbiasedly estimated by:

Ĝ1 = tr ĈW ĈZ

Ĝ2 = W′mĈZ Wm −
1
m

tr ĈZ ĈW

Ĝ3 = Z′nĈW Zn −
1
n

tr ĈW ĈZ

The variance of Ê(yEHT ) is estimated without bias by:

V̂ (Ê(yEHT )) = ν(m,n) =
1

mn
Ĝ1 +

1
n

Ĝ2 +
1
m

Ĝ3



An interesting special case

For m = n = 1 we have:

Ê(yEHT ) = yEHT

And consequently:

V (yEHT ) = G1 + G2 + G3

estimated without bias by

V̂ (yEHT ) = Ĝ1 + Ĝ2 + Ĝ3



Back to setting simulation parameters

From symmetry an non-negative defininiteness of
covariance matrices we have G1,G2,G3 ≥ 0

So we should also get Ĝ1, Ĝ2, Ĝ3 ≥ 0

Hence
ν(m,n) =

1
mn

Ĝ1 +
1
n

Ĝ2 +
1
m

Ĝ3

is a convex function of m,n



A simulation procedure

Let the simulation time be:

T (m,n) = mtW + ntZ

Generate m0 realizations of W and n0 realizations of Z

Estimate G1,G2,G3, tW , tZ

For a limited simulation time T0 solve:
ν(m,n)→ min
T (m,n) ≤ T0
m ≥ m0
n ≥ n0

Generate remaining m −m0, n − n0 realizations of W, Z

Estimate the expectation of yEHT



A simulation procedure



A perhaps better simulation procedure
Sequence of time limits and optimization problems



One more problem
worth solving

How to assess estimator properties for R1, ...,RJ ?

Do we need to repeat simulation J times ?

Having k = 107 sample realizations one may compute:

5000 independent W-values for R = 2000
2500 independent W-values for R = 4000
1666 independent W-values for R = 6000
1250 independent W-values for R = 8000
1000 independent W-values for R = 10000

Generating of sample realizations for W takes time

Recycling them would save time

Recycling some n realizations of Z saves time as well



Simulating for multiple R’s



Simulating for multiple R’s



Simulating for multiple R’s



Simulating for multiple R’s



Simulating for multiple R’s



Simulating for multiple R’s



Simulating for multiple R
How to find optimal k and n

Assume no need for rounding and mj = k/Rj , nj = n

Variance for Rj is:

νj(mj ,nj) = νj(k ,n) =
Rj

kn
Ĝ1j +

1
n

Ĝ2j +
Rj

k
Ĝ3j

Consider the synthetic criterion function

ν∗(k ,n) = max
j=1,...,J

νj(k ,n)

The function ν∗(k ,n) is convex



Simulating for multiple R
How to find optimal k and n

Assume time constraint

T (k ,n) = ktk + ntn

Pre-generate k0 and n0 samples

Solve the problem: 
ν∗(k ,n)→ min
T (k ,n) ≤ T0
k ≥ k0
n ≥ n0

e.g. through Kiefer’s (1953) golden section algorithm

Draw k − k0, n − n0 samples

And proceed with each Rj separately



Example 8
Which procedure better ?

Population: c = [1,2, ...,100]′, y = [1,2, ...,100]′

Budget: L = 505 (10% of census cost)

Estimator yEHT with Fattorini’s estimates for π’s

Characteristics requested for R = 40,60, ...,800

Time limit T0 = 7200s

Naive procedure Proposed procedure
H = 3000 full evaluations k0 = 6 · 103, n0 = 28 · 105

separately for every R k = 18008080, n = 2907054
49.257.000 samples 20.915.134 samples

time: 7482 s time 7130 s



Example 8
Which procedure better ?



Back again to example 5
The graph looked like this



Back again to example 5
Now we may compare



Thank you !

Photos: KZK-GOP, Katowice City website, Wikipedia



Another challenge: variance

For known π’s recall the variance of H-T statistic:

V (yHT ) =
1

N2

∑
i,j∈U

yiyj

(
πij

πiπj
− 1
)

and its estimator

V̂ (yHT ) =
1

N2

∑
i,j∈s

yiyj

πij

(
πij

πiπj
− 1
)

This statistic occasionally becomes negative

But it is valid for variable-sample-size designs (as opposed
to e.g. Yates-Grundy 1953, or Vijayan 1975)



Another challenge: variance

Fattorini (2006) considered probability estimates

π̂iF =
ki + 1
R + 1

π̂ijF =
kij + 1
R + 1

where kij is a count of occurences of unit pair (i , j), i , j ∈ U
within R sample replications

and the statistic:

V̂ (yEHT ) =
1

N2

∑
i,j∈s

yiyj

π̂ij

(
π̂ij

π̂i π̂j
− 1
)

(18)

and has shown its asymptotic unbiasedness for V (yEHT )
when all πij > 0



What may go wrong

Problem 1: usually 2-nd order prob’s MUCH lower than 1st!
Sampling weights and variance estimates VERY unstable

Problem 2: Negative variance estimates become common



A modest proposal

Auxiliary information related to π’s often available

Use it to improve accuracy of probability estimates

... and population characteristics estimates



Example 6
Pathak scheme and EHT estimation

Pathak scheme has useful properties (Gamrot 2013) :

Property 1

For i , i ′ ∈ U if ci ≥ ci ′ then πi ≤ πi ′

Property 2

For i 6= j , i ′ 6= j ′ ∈ U, if ci ≥ ci ′ and cj ≥ cj ′ then πij ≤ πi ′j ′

Property 3

For i , i ′ ∈ U if ci = ci ′ then πi = πi ′

Property 4

For i 6= j , i ′ 6= j ′ ∈ U, if ci = ci ′ and cj = cj ′ then πij = πi ′j ′



Example 6
Pathak scheme and EHT estimation

Properties 1-4 let us use cost as an auxiliary variable
Having assumed c1 ≤ ... ≤ cN we obtain

π1 ≤ ... ≤ πN

πi′ j′ ≤ πij for i ≤ i ′ and j ≤ j ′, i 6= j , i ′ 6= j ′ ∈ U

The cover graph for system of inequalities with N = 5 is



Example 6
Pathak scheme and EHT estimation

Fattorini’s estimates may violate restrictions

Forcing restrictions may decrease estimation error:

Calculation of first-order probabilities:
f1(π̂1, ..., π̂N)→ min
π̂1 ≥ ... ≥ π̂N
0 ≤ π̂i ≤ 1, i ∈ U

(19)

where
f1(π̂1, ..., π̂N) =

∑
i∈U

Ri(π̂iF − π̂i)
2 (20)

while weights R1, ...,RN represent numbers of replications
observed for individual units.



Example 6
Pathak scheme and EHT estimation

Calculation of second-order probabilities:
f2(π̂ij ; j < i)→ min
π̂ij ≥ π̂ij ′ ; j , j ′ < i ∈ U
π̂ij ≥ π̂i ′j ; j < i , i ′ ∈ U
0 ≤ π̂ij ≤ 1; j < i ∈ U

(21)

where
f2(π̂ij , j < i) =

∑
j<i∈U

Rij(π̂ijF − π̂ij)
2 (22)

while Rij for i > j ∈ U represent numbers of replications
containing both i-th and j-th unit.

Both solved by Active Set Method (deLeeuw et al 2009)



Example 6 - Illustration
Pathak scheme and EHT estimation

Population of N = 24 units

Individual costs c = [1, ...,24]′

Survey budget L = 90 (30% of census cost)

R = 500 sample replications



Example 6 - Illustration
Pathak scheme and EHT estimation

Estimated matrices of inclusion probabilities



Example 6 - Simulation
Pathak scheme and EHT estimation

Process repeated 5000 times for various y-vectors

y PF PA PA/PF , VA/VF MA/MF

[1,2, ...,24]′ 0.3695 0.2134 0.5776 0.4329 0.5028
[1, ...,12,12, ...,1]′ 0.0447 0.0026 0.0581 0.6647 0.7269
[12, ...,1,1, ...,12]′ 0.1365 0.0544 0.3985 0.7076 0.7537

[24,23, ...,1]′ 0.0054 0.0003 0.0645 0.9853 1.0008

PF , PA - percent of negative estimates (for Fattorini / Active Set)
VF , VA - variance of variance estimates
MF , MA - MSE of variance estimates



Example 6 - Simulation
Pathak scheme and EHT estimation

Remarks:

Large values of PF ,PA due to small R

Forcing restrictions tends to improve estimates

Simulations results for whole population indirectly utilized

Eventual ties shoud lead to further improvement

Feasibility restricted by the size of the problem
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