Surveying populations when individual sampling costs are not homogenous

Wojciech Gamrot

Department of Statistics Econometrics and Mathematics University of Economics in Katowice

Outline

Cost model

- Sample cost under SRSWOR
- Simple random sampling
- Pathak scheme
- Greedy scheme
- Simulation
- Variance estimation

A motivating example Poland (by night - according to NASA)

A closer look at that big spot

The center of Katowice

A typical silesian bus

Need this to travel by mass transit

A ticket issued by Municipal Transport Union of Upper Silesia (KZK-GOP)

Examples of varying-cost situations

- Sampling communication lines
- Sampling in auditing
- Spatial dispersion (forest \Box 's, companies, households)
- Costs ~ unit size (buildings, cultivation, ecologic assets)
- Varying scope of required data (fiscal issues, medicine)
- Cluster sampling / Two-stage sampling
- Non-respondents to be followed up
- Recursive / adaptive sampling

Cost is a useful abstraction

It may include more than money

Other resources may be limited as well

- Time
- Equipment
- Administrative permissions

Here, we shall concentrate on a single resource

Notation

• Finite population	$U = \{1,, N\}$
• Fixed characteristic	$y_1,,y_N$
• Parameter under study	$\overline{y} = N^{-1} \sum_{i \in U} y_i$
• Sample	$m{s} \subset m{U}$
 Sampling design 	P(s)
• 1st-order inclusion probability:	$\pi_i = Pr(i \in s)$
• 2nd-order inclusion probability:	$\pi_{ij} = Pr(i, j \in s)$

Sample cost

A general definition

The cost C_s of the sample *s* is the amount of resources spent to observe desired characteristics of units in *s*

Assumed model (Skibicki & Wywial 2002,2003)

- Individual costs $c_1, ..., c_N$ are associated with units in U
- $c_s = \sum_{i \in s} c_i$
- \bigcirc $c_1, ..., c_N$ are constant
- $c_1, ..., c_N$ are known in advance

Sample cost

Specific model features

- Finite population assumed
- Individual costs differ
- Individual costs non-random
- Individual costs known in advance
- Sample cost *C_s* generally random
- Distribution of C_s depends on P(s)
- It may be assessed in advance

(vs renewal processes)

(vs most of literature)

(vs Khan models)

(vs Pathak/Kremers)

• Fixed sample size	п
1st order inclusion probability:	$\pi_i = \frac{n}{N}$
• 2nd order inclusion probability:	$\pi_{ij} = \frac{n(n-1)}{N(N-1)}$
• Sample space given <i>n</i> :	$\Omega_n = \{ \boldsymbol{s} \subset \boldsymbol{U} : \# \boldsymbol{s} = \boldsymbol{n} \}$
• Size of Ω_n :	$\frac{N!}{n!(N-n)!}$
• Distribution of C_s :	$Pr\{C_s = a\} = \sum_{s:C_s = a} P(s)$

A little more notation

• Assume $c_1 \leq ... \leq c_N$ (no loss of generality)

Let

$$\overline{c} = \frac{1}{N} \sum_{i \in U} c_i \tag{1}$$

$$S_U^2(c) = \frac{1}{N-1} \sum_{i \in U} (c_i - \overline{c})^2$$
⁽²⁾

C_s distribution characteristics:

• expectation $E(C_s) = n\overline{c}$ • variance $V(C_s) = n \left(1 - \frac{n}{N}\right) S_U^2(c)$

• minimum

 $c_{min}(n) = \sum_{i=1}^{n} c_i$

• maximum

$$c_{max}(n) = \sum_{i=1}^{n} c_{N-i+1}$$

- Survey budget: L
- Budget-use coefficient:

$$W_s = \frac{C_s}{L} \tag{3}$$

• If $c_1 = ... = c_N = \overline{c}$ and $L = z\overline{c}$ for $z \in \mathcal{Z}$ then L = 1

• In general:

$$\frac{c_{min}(n)}{L} = w_{min}(n) \le W_s \le w_{max}(n) = \frac{c_{max}(n)}{L}$$
(4)

- Population of 695 farms in Dabrowa Tarnowska district
- Sampling cost proportional to farm area:

Example 1

- False assumption:
- Sample size rule:
- Simplifying to $L = n\overline{c}$ we get:

$$c_1 = ... = c_N = c$$

 $n = \lfloor \frac{L}{c} \rfloor$

п	$w_{\min}(n)$	$w_{\max}(n)$		
100	0.34	2.07		
200	0.44	1.72		
300	0.53	1.50		
400	0.62	1.35		
500	0.71	1.22		
600	0.83	1.11		

Observed frequencies:

n	Deviations >10% in plus	Deviations >10% in minus	Total
50	0.1058	0.1025	0.2083
100	0.0350	0.0255	0.0605

For other populations it may be worse.

Interim conclusion

If nothing is done:

- deviations in plus:
 - generate financial losses
 - may render the survey unfeasible
 - may force reduction of the sample
 - lead to 'unofficial' rejective sampling (and biases)
- deviations in minus:
 - may trigger funding cuts for next edition of the survey
 - undermine credibility of survey results
 - suggest that unused funds may improve accuracy

Budget never exceeded for

$$n_x = max\{n: c_{max}(n) \le L\}$$
(5)

• Equivalent to a margin of funds:

$$\Delta = L - n_x \overline{c} \tag{6}$$

• The way to go ?

Calculations for $L = \alpha (c_1 + ... + c_N)$:

α	n	n_x	α	n	n_x
0,01	6	1	0,15	104	42
0,02	13	3	0,20	139	60
0,03	20	5	0,30	208	101
0,04	27	8	0,40	278	147
0,05	34	10	0,50	347	202
0,06	41	13	0,60	417	265
0,07	48	16	0,70	486	337
0,08	55	19	0,80	556	421
0,09	62	22	0,90	625	525
0,10	69	25	1,00	695	695

Quantiles of W_s:

For $\alpha \leq$ 0.2 less than half budget spent in 98% of samples !

Pathak (1976) fixed-cost sampling

- Units are drawn
 - one by one
 - with equal probabilities
 - without replacement
 - while the cumulative cost is lower than L
 - the unit which breaks this is not included, (at no cost)
- Sample (*A*₁, ..., *A*_{*M*})

- Budget never exceeded
- Random sample cost
- Random sample size M
- min(M) and max(M) easily calculated

Example 4 N = 50, c = [1, 2, ..., 50]', Simulation: 10⁶ samples

Pathak fixed-cost sampling inclusion probabilities

First-order inclusion probability

$$\pi_i = \frac{\Phi_i}{N!}$$

Second-order inclusion probability

$$\pi_{ij} = \frac{\Phi_{ij}}{N!}$$

where:

 Φ_i - # permutations of U resulting in drawing the *i*-th unit

 Φ_{ij} - # permutations of *U* resulting in drawing of (*i*, *j*)

Dependent on costs and usually hard to calculate.

Estimation

- Values Y₁, ..., Y_M of study variable observed
- Inclusion probabilities not known
- Computation of Horvitz-Thompson estimator problematic
- Pathak's (1976) unbiased estimator:

$$\overline{Y}_M = \frac{1}{M} \sum_{i=1}^M Y_i \tag{7}$$

Estimation

• Its variance:

$$V(\overline{Y}_M) = \frac{1}{2N(N-1)} \sum_{i \neq j \in U} \left(\Lambda_{ij} - \frac{1}{N} \right) (y_i - y_j)^2$$
(8)

where

$$\Lambda_{ij} = E\left(\frac{1}{M} \middle| A_1 = i, A_2 = j\right)$$
(9)

• Variance estimator:

$$\hat{V}(\overline{Y}_M) = \left(\frac{1}{M} - \frac{1}{N}\right) \frac{1}{2M(M-1)} \sum_{i \neq j=1}^{M} (Y_i - Y_j)^2$$
(10)

Example 5

- A population of N = 319 KZK-GOP communication lines
- Study variable: yearly number of passengers
- Sampling cost proportional to yearly vehicle miles driven
- Joint distribution of cost vs study variable

A greedy sampling scheme (Gamrot 2015)

For any set $Q \subseteq U$ denote:

$$U(Q) = \left\{ i \in U - Q : c_i \le L - \sum_{i \in Q} c_i \right\}$$
(11)

The scheme works as follows:

1 Let
$$s_0 = \emptyset$$

2 For k = 1, 2, ... do the following:

If U(s_{k-1}) is nonempty, then draw an element A_k from it with equal probabilities and let s_k = s_{k-1} ∪ {A_k}

• If in some K-th step $U(s_k)$ is empty then go to step 3

- A population of N = 319 KZK-GOP communication lines
- Study variable: yearly number of passengers
- Sampling cost proportional to yearly vehicle miles driven
- Joint distribution of cost vs study variable

Back to example 5

Sample size distributions

Property 1

Individual first-order inclusion probabilities under greedy scheme are not lower than those under Pathak scheme

Property 2

Expected sample size under greedy scheme is not lower than under Pathak scheme

However:

- For both schemes probabilities are hard to calculate
- For both schemes cheaper units are chosen more often
- For the greedy scheme differences are more pronounced

How to estimate the mean ?

• For known $\pi_1, ..., \pi_N$, an unbiased estimator would be:

$$\overline{y}_{HT} = \frac{1}{N} \sum_{i \in s} \frac{y_i}{\pi_i}$$
(12)

with the variance:

$$V(\overline{y}_{HT}) = \frac{1}{N^2} \sum_{i,j \in U} y_i y_j \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1\right)$$
(13)

and its estimator:

$$\hat{V}(\overline{y}_{HT}) = \frac{1}{N^2} \sum_{i,j \in s} \frac{y_i y_j}{\pi_{ij}} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right)$$
(14)

• However $\pi_1, ..., \pi_N$ are not known

- As assumed, individual costs are known
- Draw *R* independent replications of *s* (same scheme)
- Calculate counts of occurences $k_1, ..., k_N$
- Compute *empirical inclusion probabilities* $\hat{\pi}_1, ..., \hat{\pi}_N$
- Plug them into estimator:

$$\overline{y}_{EHT} = \frac{1}{N} \sum_{i \in s} \frac{y_i}{\hat{\pi}_i}$$
(15)

- Estimates must be positive for \overline{y}_{EHT} 's moments to be finite
- Stopping rule providing desired accuracy is needed
- Inclusion of units is not independent
- True probabilities often very small

How to estimate inclusion probabilities ? Some ideas ...

Thompson & Wu (2008)

$$\hat{\pi}_i = \frac{k_i}{R} \tag{16}$$

Fattorini (2006,2009):

$$\hat{\pi}_{iF} = \frac{k_i + 1}{R + 1} \tag{17}$$

Gamrot (2012): use isotonic regression

Gamrot (2013): use RML

Gamrot (2013): use kernel smoothing

Gamrot (2014): use sampling weight posterior mode/mean

Assessing properties of mean estimators ?

(design-and-randomization-based properties)

Fattorini's results for $\hat{\pi}_{iF}$:

$$ARB(\overline{y}_{EHT}) = \frac{|E(\overline{y}_{EHT}) - \overline{y}|}{\overline{y}} \le \frac{1}{(R+2)\pi_{-}}$$

$$\frac{|MSE(\overline{y}_{EHT}) - V(\overline{y}_{HT})|}{V(\overline{y}_{HT})} \leq \frac{9}{(R+2)\pi_{-}} \left(1 + \frac{\overline{y}^2}{V(\overline{y}_{HT})}\right)$$

But what is exact (non-relative) bias ? And what about other estimators ?

Perhaps a simulation ?

A naive approach:

- Find some complete data set with known y-values
- Repeat independently H >> 1 times following steps:
 - Draw s from U
 - Observe' study variable in s
 - **③** Generate R >> 1 replications $s'_1, ..., s'_R$ of s
 - Ocunt occurrences of sampled units
 - O Calculate estimates of inclusion probabilities
 - **O** Plug everything into \overline{y}_{EHT}
- Examine the empirical distribution of \overline{y}_{EHT}

Perhaps a simulation ?

The naive approach:

- simulates repeated sampling
- is easy to justify intuitively
- is very simple

However:

- the number of sample draws is $H \cdot (R+1)$
- when H, R >> 1, it may be infeasible
- simulating for $R = R_1, ..., R_J$, it is even harder

A better alternative

• Consider a random vector $\mathbf{Z} = [z_1, ..., z_N]'$ where

$$z_i = \left\{ \begin{array}{ll} 0 & \textit{for} & i \in s \\ 1 & \textit{for} & i \notin s \end{array} \right.$$

• Consider a random vector $\mathbf{W} = [w_1, ..., w_N]'$ where:

$$w_i = \frac{y_i}{N\hat{\pi}_i}$$

- W and Z are independent
- Components within W are not
- Components within Z are not
- The H-T estimator is expressed as:

$$\overline{y}_{EHT} = \mathbf{W}'\mathbf{Z}$$

Consequently

$$E(\overline{y}_{EHT}) = E(\mathbf{W}')E(\mathbf{Z})$$

- Simulate independently:
 - *m* realizations **W**₁,..., **W**_{*m*} of **W**
 - *n* realizations **Z**₁, ..., **Z**_n of **Z**
- This requires $m \cdot R + n$ sample draws
- Denote $\mathbf{W}_i = [w_{i1}, ..., w_{iN}]', \ \mathbf{Z}_i = [z_{i1}, ..., z_{iN}]'$

Calculate means

$$\overline{\mathbf{W}}_m = [\overline{w_1}, ..., \overline{w_N}] = \frac{1}{m} \sum_{i=1}^m \mathbf{W}_i$$
$$\overline{\mathbf{Z}}_n = [\overline{z_1}, ..., \overline{z_N}] = \frac{1}{n} \sum_{i=1}^n \mathbf{Z}_i$$

- They are respectively unbiased for $E(\mathbf{W})$ and $E(\mathbf{Z})$
- Hence the estimator:

$$\hat{E}(\overline{y}_{EHT}) = \overline{\mathbf{W}}_m' \overline{\mathbf{Z}}_m$$

• is unbiased for $E(\overline{y}_{EHT})$

- Let C_W and C_Z are covariance matrices of W and Z
- The estimator variance is:

$$V(\hat{E}(\overline{y}_{EHT})) = \frac{1}{mn}G_1 + \frac{1}{n}G_2 + \frac{1}{m}G_3$$

where

$$G_1 = tr \mathbf{C}_W \mathbf{C}_Z, \quad G_2 = E(\mathbf{W}')\mathbf{C}_Z E(\mathbf{W}) \quad G_3 = E(\mathbf{Z}')\mathbf{C}_W E(\mathbf{Z})$$

• How to set m, n minimizing the variance ?

Covariance matrices are unbiasedly estimated by:

$$\hat{\mathbf{C}}_{W} = \begin{bmatrix} \hat{c}_{w_{1},w_{1}} & \dots & \hat{c}_{w_{1},w_{N}} \\ \vdots & \ddots & \vdots \\ \hat{c}_{w_{N},w_{1}} & \dots & \hat{c}_{w_{N},w_{N}} \end{bmatrix} \qquad \hat{\mathbf{C}}_{Z} = \begin{bmatrix} \hat{c}_{z_{1},z_{1}} & \dots & \hat{c}_{z_{1},z_{N}} \\ \vdots & \ddots & \vdots \\ \hat{c}_{z_{N},z_{1}} & \dots & \hat{c}_{z_{N},z_{N}} \end{bmatrix}$$

where

$$\hat{c}_{w_g,w_h} = rac{1}{m-1}\sum_{i=1}^m (w_{gi}-\overline{w}_g)(w_{hi}-\overline{w}_h) \hat{c}_{z_g,z_h} = rac{1}{n-1}\sum_{i=1}^n (z_{gi}-\overline{z}_g)(z_{hi}-\overline{z}_h)$$

for $g, h \in U$

Constants G_1, G_2, G_3 are unbiasedly estimated by:

$$\hat{G}_{1} = tr \, \hat{\mathbf{C}}_{W} \hat{\mathbf{C}}_{Z}$$
$$\hat{G}_{2} = \overline{\mathbf{W}}_{m}^{\prime} \hat{\mathbf{C}}_{Z} \overline{\mathbf{W}}_{m} - \frac{1}{m} tr \, \hat{\mathbf{C}}_{Z} \hat{\mathbf{C}}_{W}$$
$$\hat{G}_{3} = \overline{\mathbf{Z}}_{n}^{\prime} \hat{\mathbf{C}}_{W} \overline{\mathbf{Z}}_{n} - \frac{1}{n} tr \, \hat{\mathbf{C}}_{W} \hat{\mathbf{C}}_{Z}$$

The variance of $\hat{E}(\overline{y}_{EHT})$ is estimated without bias by:

$$\hat{V}(\hat{E}(\overline{y}_{EHT})) = \nu(m,n) = \frac{1}{mn}\hat{G}_1 + \frac{1}{n}\hat{G}_2 + \frac{1}{m}\hat{G}_3$$

For m = n = 1 we have:

$$\hat{E}(\overline{y}_{EHT}) = \overline{y}_{EHT}$$

And consequently:

$$V(\overline{y}_{EHT}) = G_1 + G_2 + G_3$$

estimated without bias by

$$\hat{V}(\overline{y}_{EHT}) = \hat{G}_1 + \hat{G}_2 + \hat{G}_3$$

Back to setting simulation parameters

- From symmetry an non-negative defininiteness of covariance matrices we have G₁, G₂, G₃ ≥ 0
- So we should also get $\hat{G}_1, \hat{G}_2, \hat{G}_3 \ge 0$
- Hence

$$\nu(m,n) = \frac{1}{mn}\hat{G}_1 + \frac{1}{n}\hat{G}_2 + \frac{1}{m}\hat{G}_3$$

is a convex function of m, n

A simulation procedure

• Let the simulation time be:

$$T(m,n) = mt_W + nt_Z$$

- Generate m₀ realizations of W and n₀ realizations of Z
- Estimate G_1, G_2, G_3, t_W, t_Z
- For a limited simulation time *T*₀ solve:

$$\left\{ \begin{array}{l} \nu(m,n) \to \min \\ T(m,n) \leq T_0 \\ m \geq m_0 \\ n \geq n_0 \end{array} \right.$$

- Generate remaining m m₀, n n₀ realizations of W, Z
- Estimate the expectation of \overline{y}_{EHT}

A simulation procedure

A perhaps better simulation procedure

Sequence of time limits and optimization problems

- How to assess estimator properties for $R_1, ..., R_J$?
- Do we need to repeat simulation J times ?
- Having $k = 10^7$ sample realizations one may compute:
 - 5000 independent **W**-values for R = 2000
 - 2500 independent **W**-values for R = 4000
 - 1666 independent W-values for R = 6000
 - 1250 independent W-values for R = 8000
 - 1000 independent W-values for R = 10000
- Generating of sample realizations for W takes time
- Recycling them would save time
- Recycling some *n* realizations of **Z** saves time as well

n samples

Z1	
ZN	

• Assume no need for rounding and $m_j = k/R_j$, $n_j = n$

Variance for R_i is:

$$\nu_j(m_j, n_j) = \nu_j(k, n) = \frac{R_j}{kn}\hat{G}_{1j} + \frac{1}{n}\hat{G}_{2j} + \frac{R_j}{k}\hat{G}_{3j}$$

Consider the synthetic criterion function

$$\nu^*(k,n) = \max_{j=1,\dots,J} \nu_j(k,n)$$

• The function $\nu^*(k, n)$ is convex

Simulating for multiple *R* How to find optimal *k* and *n*

Assume time constraint

$$T(k,n) = kt_k + nt_n$$

- Pre-generate k₀ and n₀ samples
- Solve the problem:

$$(\begin{array}{c}
u^*(k,n)
ightarrow \textit{min} \ T(k,n) \leq T_0 \ k \geq k_0 \ n \geq n_0 \end{array}$$

e.g. through Kiefer's (1953) golden section algorithm

- Draw $k k_0$, $n n_0$ samples
- And proceed with each *R_j* separately
- Population: $\mathbf{c} = [1, 2, ..., 100]', \ \mathbf{y} = [1, 2, ..., 100]'$
- Budget: L = 505 (10% of census cost)
- Estimator \overline{y}_{EHT} with Fattorini's estimates for π 's
- Characteristics requested for *R* = 40, 60, ..., 800
- Time limit *T*₀ = 7200*s*

Naive procedure	Proposed procedure		
H = 3000 full evaluations	$k_0 = 6 \cdot 10^3, n_0 = 28 \cdot 10^5$		
separately for every R	<i>k</i> = 18008080, <i>n</i> = 2907054		
49.257.000 samples	20.915.134 samples		
time: 7482 s	time 7130 s		

Example 8 Which procedure better ?

Back again to example 5 The graph looked like this

Back again to example 5

Now we may compare

Thank you !

Photos: KZK-GOP, Katowice City website, Wikipedia

Another challenge: variance

• For known π 's recall the variance of H-T statistic:

$$V(\overline{y}_{HT}) = \frac{1}{N^2} \sum_{i,j \in U} y_i y_j \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right)$$

and its estimator

$$\hat{V}(\overline{y}_{HT}) = \frac{1}{N^2} \sum_{i,j \in \mathbf{s}} \frac{y_i y_j}{\pi_{ij}} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right)$$

- This statistic occasionally becomes negative
- But it is valid for variable-sample-size designs (as opposed to e.g. Yates-Grundy 1953, or Vijayan 1975)

• Fattorini (2006) considered probability estimates

$$\hat{\pi}_{iF} = \frac{k_i + 1}{R + 1} \qquad \qquad \hat{\pi}_{ijF} = \frac{k_{ij} + 1}{R + 1}$$

where k_{ij} is a count of occurences of unit pair (i, j), $i, j \in U$ within R sample replications

and the statistic:

$$\hat{V}(\overline{y}_{EHT}) = \frac{1}{N^2} \sum_{i,j \in s} \frac{y_i y_j}{\hat{\pi}_{ij}} \left(\frac{\hat{\pi}_{ij}}{\hat{\pi}_i \hat{\pi}_j} - 1 \right)$$
(18)

• and has shown its asymptotic unbiasedness for $V(\overline{y}_{EHT})$ when all $\pi_{ij} > 0$

- Problem 1: usually 2-nd order prob's MUCH lower than 1st! Sampling weights and variance estimates VERY unstable
- Problem 2: Negative variance estimates become common

- Auxiliary information related to π 's often available
- Use it to improve accuracy of probability estimates
- ... and population characteristics estimates

Pathak scheme has useful properties (Gamrot 2013) :

Property 1

For $i, i' \in U$ if $c_i \geq c_{i'}$ then $\pi_i \leq \pi_{i'}$

Property 2

For $i \neq j, i' \neq j' \in U$, if $c_i \geq c_{i'}$ and $c_j \geq c_{j'}$ then $\pi_{ij} \leq \pi_{i'j'}$

Property 3

For $i, i' \in U$ if $c_i = c_{i'}$ then $\pi_i = \pi_{i'}$

Property 4

For $i \neq j, i' \neq j' \in U$, if $c_i = c_{i'}$ and $c_j = c_{j'}$ then $\pi_{ij} = \pi_{i'j'}$

- Properties 1-4 let us use cost as an auxiliary variable
- Having assumed $c_1 \leq ... \leq c_N$ we obtain

•
$$\pi_1 \le ... \le \pi_N$$

•
$$\pi_{i'j'} \leq \pi_{ij}$$
 for $i \leq i'$ and $j \leq j', i \neq j, i' \neq j' \in U$

• The cover graph for system of inequalities with N = 5 is

- Fattorini's estimates may violate restrictions
- Forcing restrictions may decrease estimation error:
- Calculation of first-order probabilities:

4

$$\begin{cases} f_1(\hat{\pi}_1, ..., \hat{\pi}_N) \to \min \\ \hat{\pi}_1 \ge ... \ge \hat{\pi}_N \\ 0 \le \hat{\pi}_i \le 1, i \in U \end{cases}$$
(19)

where

$$f_1(\hat{\pi}_1, ..., \hat{\pi}_N) = \sum_{i \in U} R_i (\hat{\pi}_{iF} - \hat{\pi}_i)^2$$
(20)

while weights $R_1, ..., R_N$ represent numbers of replications observed for individual units.

• Calculation of second-order probabilities:

$$\begin{cases} f_2(\hat{\pi}_{ij}; j < i) \rightarrow \min \\ \hat{\pi}_{ij} \ge \hat{\pi}_{ij'}; \quad j, j' < i \in U \\ \hat{\pi}_{ij} \ge \hat{\pi}_{i'j}; \quad j < i, i' \in U \\ 0 \le \hat{\pi}_{ij} \le 1; \quad j < i \in U \end{cases}$$
(21)

where

$$f_2(\hat{\pi}_{ij}, j < i) = \sum_{j < i \in U} R_{ij} (\hat{\pi}_{ijF} - \hat{\pi}_{ij})^2$$
 (22)

while R_{ij} for $i > j \in U$ represent numbers of replications containing both *i*-th and *j*-th unit.

• Both solved by Active Set Method (deLeeuw et al 2009)

- Population of *N* = 24 units
- Individual costs $\mathbf{c} = [1, ..., 24]'$
- Survey budget L = 90 (30% of census cost)
- R = 500 sample replications

Estimated matrices of inclusion probabilities

Process repeated 5000 times for various y-vectors

У	P_F	PA	P_A/P_F ,	V_A/V_F	M_A/M_F
[1,2,,24]'	0.3695	0.2134	0.5776	0.4329	0.5028
[1,, 12, 12,, 1] [']	0.0447	0.0026	0.0581	0.6647	0.7269
[12,, 1, 1,, 12] [']	0.1365	0.0544	0.3985	0.7076	0.7537
[24, 23,, 1]'	0.0054	0.0003	0.0645	0.9853	1.0008

 P_F , P_A - percent of negative estimates (for Fattorini / Active Set) V_F , V_A - variance of variance estimates M_F , M_A - MSE of variance estimates Remarks:

- Large values of P_F , P_A due to small R
- Forcing restrictions tends to improve estimates
- Simulations results for whole population indirectly utilized
- Eventual ties shoud lead to further improvement
- Feasibility restricted by the size of the problem

References

- Aires N. (1999) Algorithms to find exact inclusion probabilities for conditional Poisson sampling and Pareto πps sampling designs. *Methodology and Computing in Applied Probability*, 4, 457-469.
- Bakhshi Z. H., Khan M.F., Ahmad Q. S. (2010), Optimal Sample Numbers in Multivariate Stratified Sampling with a Probabilistic Cost Constraint, Int J. of Math and Appl Stat 1(2), 111-120.
- Breidt F.J. Fuller W.A. (1993) Regression Weighting for Multiphase Samples, Sankhya Special Volume 55, Series B, 297-309
- Javed S., Bakhshi Z.H., Khalid M.M. (2009) Optimum allocation in Stratified Sampling with random costs, *Int Rev Pure Appl Math.* 5(2), 363-370.
- Kadane, J.B. (2005). Optimal Dynamic Sample Allocation Among Strata. J. Official Stat, 21, 531-541
- Land A.H., Doig A.G. (1960) An automatic method of solving discrete programming problems, *Econometrica* 28(3), 497-520.
- Khan M.F., Ali I., Raghav Y.S., Bari A. (2012) Allocaton in Multivariate Stratified Surveys with Non-Linear Random Cost Function, *Am. J. of Oper Res*, 2, 100-105.
- Rosen B. (1997) Asymptotic theory of order sampling J. Stat. Plann. Inf. 62, 135-158.

References

- Fattorini L. (2006) Applying the Horvitz-Thompson Criterion in Complex De-signs: A Computer-Intensive Perspective for Estimating Inclusion Probabilities, *Biometrika*, 93, (2), 269-278.
- Fattorini L. (2009) An adaptive algorithm for estimating inclusion probabilities and performing the Horvitz-Thompson criterion in complex designs. *Comput. Stat.* 24, 623 639.
- Pathak K. (1976) Unbiased Estimation in Fixed-Cost Sequential Sampling Schemes, Ann. Stat., 4 (5), 1012-1017.
- Thompson M. E. Wu C. (2008) Simulation-based randomized systematic PPS sampling under substitution of units, *Surv. Meth.*, 34 (1), 3-10.
- Gamrot W. (2012) Simulation-assisted Horvitz-Thompson statistic and isotonic regression. In: Ramik J., Stavarek D. (eds.) *Proceedings of the 30th MME Conference*, 207-212.
- Gamrot W. (2013) On exact computation of minimum sample size for restricted estimation of binomial parameter, *J. Stat. Plan. Inf.* 143, 852-866.
- Gamrot W. (2013) On Kernel Smoothing and Horvitz-Thompson Estimation. Studia Ekonomiczne. 152, 32-41.
- Gamrot W. (2014) Estimators for the Horvitz-Thompson Statistic Based on Some Posterior Distributions. *Math Popul Stud*, 21(1), 12-29.
- Gamrot W. (2015) Estymacja wartości przeciętnej uwzględniająca koszt pozyskania danych. UE. Katowice.