Indirect estimation of poverty at a local level in Poland

Łukasz Wawrowski

12.07.2018

Department of Statistics

Outline

- 1. Introduction
- 2. Small area estimation
- 3. Selected results
- 4. Conclusions

Aim of the research

Estimation of poverty indicators at LAU 1 level in Poland

Poverty indicators — headcount ratio and poverty gap

The general formula for poverty indicators depending on the parameter α :

Headcount ratio (F_0) for $\alpha = 0$ Poverty gap (F_1) for $\alpha = 1$

$$F_{\alpha} = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{z - E_{j}}{z} \right)^{\alpha} I(E_{j} < z), \qquad \alpha \geq 0, \tag{1}$$

where:

N — population size,

z — poverty threshold,

 E_j — income of j-th unit,

 $I(E_j < z) = 1$, if $E_j < z$ and $I(E_j < z) = 0$ in opposite case.

-Introduction

Currently published information about poverty

Figure 1: Headcount ratio by provinces in 2011 year

Figure 2: Headcount ratio by regions in 2012 year

Unit level model

Nested error linear regression model:

$$Y_{dj} = x_{dj}^T \beta + u_d + e_{dj}, \qquad j = 1, ..., N_d, \qquad d = 1, ..., D,$$
 (2)

where:

 Y_{dj} — transformed income of j-th unit in d-th area, x_{dj}^T — auxiliary variables for j-th unit in d-th area, β — regression coefficients, u_d — random effect with $u_d \stackrel{iid}{\sim} N(0, \sigma_u^2)$, e_{dj} — random error with $e_d \stackrel{ind}{\sim} N(0, \sigma_e^2)$.

[Molina and Rao 2010]

Empirical best estimator

Figure 3: Poverty indicators estimation using Monte Carlo simulations

Own elaboration based on [Molina and Rao 2010].

Precision assessment criterion

• Relative root mean square error:

$$RRMSE(\hat{F}_{\alpha d}) = \frac{RMSE(\hat{F}_{\alpha d})}{\hat{F}_{\alpha d}},$$
 (3)

where:

 $RMSE(\hat{y})$ — root of mean square error of estimate, \hat{y} — poverty indicator estimate. Bootstrap — 500 replications.

Selected results

Background of research

Estimated variables

- headcount ratio
- poverty gap

Domains

• 379 LAU 1

Data

- EU-SILC 2011 as a source of dependent and independent variables
- National Census of Population and Housing 2011 as a source of auxiliary variables

Headcount ratio by LAU 1

Spatial diversity of **headcount ratio** by LAU 1 in 2011 year — direct and indirect approach

Figure 4: Direct estimation

Figure 5: Indirect estimation

Poverty gap and headcount ratio by LAU 1

Spatial diversity of poverty gap and headcount ratio by LAU 1 in 2011 year — indirect approach

Figure 6: Poverty gap

Poverty gap and headcount ratio by LAU 1

Spatial diversity of poverty gap and headcount ratio by LAU 1 in 2011 year — indirect approach

Figure 6: Poverty gap

Figure 7: Headcount ratio

Model assumptions checking

Figure 8: Distribution of random errors at household level and random effects at LAU 1 level

Common alabamatica based on EU CU C 2011

Precision of headcount ratio and poverty gap estimates

Figure 9: Comparison of RRMSE of estimates by LAU 1 in 2011 year

Conclusions

- Obtained results significantly expand available information about poverty of poverty gap in territorial sections.
- The unit level model made possible to obtain precise results at the LAU 1 level.
- The use of indirect estimation allows to estimate poverty indicators for LAU 1 that were not present in the sample.
- Poverty in Poland is characterized by a strong spatial diversity.

Thank you for your attention