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The aims of studies

An analysis of the possibility of using parametric bootstrap test for
testing dependence between random effects.

A comparison in a simulation study the properties of this
significance test with one of the classic test.

Analysis taking into account the problem of:
- model misspecyfications,
- non-normality of random effects.
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Introduction - Small Area Estimation

Small area - domain for which we cannot obtain direct estimates with
adequate precision (Rao, 2003, p. 2).

One of the main approache in small area estimation - model-based
approach. A superpopultion model as a source of randomness in this
approach.
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Linear mixed model

The general linear mixed model (cf. Jiang, 2007, pp. 1-2):

Y = Xβ + Zu + ε (1)

where:
- Y – the random vector of values of the dependent variable;
- X, Z – known matrices of auxiliary variables;
- β – the vector of unknown parameters.

Random effects v and stochastic disturbance ε are independently
distributed with variance-covariance matrices denoted by G(δ) and R(δ),
where δ is a vector of variance components.
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Linear mixed model with correlation of random
effects (1)

We can consider correlation of random effects as two cases:
autocorrelation of random effect

simultaneously autoregressive process of random effect in estimation
the annual per-capita mean income in Tuscany (Pratesi and Salvati,
2008);
normal mixed autoregressive moving average process of random effects
(Tiao and Ali, 1971);
serial correlation of random effect in estimation of production for
Japanes chemical industry (Skoglund and Karlsson, 2001);

correlation between random effects
to estimation plasma concentration some drug by nonlinear mixed
effects model (Dumont C. et. al., 2014);
to analyze the health care costs at the end of life (Menec et al. 2004).
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Linear mixed model with correlation of random
effects (2)

Yid = (β1 + v1)xid + β0 + v2 + eid (2)

where:
- Yid – values of the dependent variable;
- xid – values of the auxiliary variables;
- β0, β1 – unknown parameters

and

- G(δ) = D2
[

v1
v2

]
=
[

σ2
v1 ρσv1σv2

ρσv1σv2 σ2
v2

]
- R(δ) = σ2

e In
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Classic test - Likelihood Ratio Test

We considered the following hypotheses:

H0 : ρ = 0
H1 : ρ 6= 0

The test statistic is given by:

2log
(L2

L1

)
= 2 [log(L2)− log(L1)] (3)

where:

- L1 - the likelihood for more general model;
- L2 - the likelihood for the restricted model.

Under the hypothesis H0 this test statistic has asymptotic χ2 distribution
with k2 − k1 degrees of freedom (where k1 and k2 are the number of
model parameters) (Pinheiro and Bates, 2000, p. 83).
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Monte Carlo Test

Idea of the Monte Carlo test was first described by Bartlett (1963) and
Barnard (1963).
This test based on the comparison of original data with random samples,
which are generated under the null hypothesis (Hope, 1968, p. 582).
It should be noted similarity of developed in 1980’s parametric bootstrap
approximation to the procedure of Monte Carlo test (Zhu, 2005, p. 2).
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Parametric bootstrap test (1)

The prametric bootstrap method finds application in many areas i.a.:
estimation of the MSE (Gonzales-Manteiga et. al., 2008; Butar and
Lahiri, 2003);
approximation of the distribution LRT statistic
(Shaw and Geyer, 1997);
approximation of the distribution EBLUP (Chatterje et. al., 2008);
Bayesian inference (Efron, 2012).
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Parametric bootstrap test (2) - testing procedure

1. Estimation ρ for the original data set (denoted by ρ0);
2. B-times:

a) generating data under hypothesis H0;
b) estimation ρ∗b according to the model with correlated random effects;

3. Calculate p-value as p = 1+ b:|ρ∗b |>|ρ0|
1+B .
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Simulation study

assumptions

results of part I of the simulation study

results of part II of the simulation study

conclusions
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Simulation study (1)

Data set:
data Särndal et al (1992);
population elements – counties in Sweden (N = 284);
y - revenues from municipal taxation (in millions of kronor);
x - population (in thousands);
domains according to the cluster indicator (D = 50).
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Simulation study (2) - choice of the model

Yid = β1xid + β0 + eid (4)

Yid = β1xid + β0 + vd + eid (5)

Yid = (β1 + vd )xid + β0 + eid (6)

Yid = (β1 + v1d )xid + β0 + v2d + eid (7)

Yid = (β1 + v1d∗)xid + β0 + v2d∗ + eid (8)
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Simulation study (3)

We compare the properties of two test - Likelihood Ratio Test and
parametric bootstrap test:
We considered the problem of model misspecification and
non-normality of random effects;

We divide simulation study into part:
part I - probability of type I errors;
part II - probability of type II errors;

The number of MC iterations equals 1.000 and the number of
bootstrap iterations – 200;
The simulation study was prepared using R language (R Development
Core Team, 2018);
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The problem of non-normality of random effects (1)

In part I of the simulation:
normal distribution with expected value equal 0;
shifted exponential distribution with expected value equal 0;
shifted gamma distribution with expected value equal 0 and
coefficient of asymmetry equal 4

and variance computed based on real data.
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The problem of non-normality of random effects (2)

In part II of the simulation:
multivariate normal distribution with expected values
equal 0 and ρ = {−0.9;−0.6,−0.3; 0.3; 0.6; 0.9};
normal copula with ρ = {−0.9;−0.6,−0.3; 0.3; 0.6; 0.9} and
marginal distributions:

shifted exponential distribution;
shifted gamma distribution.

t copula with ρ = {−0.9;−0.6,−0.3; 0.3; 0.6; 0.9}, df = 3 and
marginal distributions:

shifted exponential distribution;
shifted gamma distribution.
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The problem of non-normality of random effects -
copula function (1)

C(u) : [0, 1]n → [0, 1]

H(x , y) = C (F1(x),F2(x))
(Sklar, 1959)

Gaussian copula
Cρ(u1, v2) = Φρ (F1(u1),F2(u2))

t copula
Cρ,v (u1, v2) = Tρ,v (F1(u1),F2(u2))

(cf. Nelsen, 1999, pp. 46-47)
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The problem of non-normality of random effects -
copula function (2)

Copula functions have applications i.a. in:
modeling the relationship between mortality and losses of the insurer
(Frees et al., 1996; Frees et al., 2005);
modeling insolvency risk and risk management (Embrechts et al.,
2003);
portfolio optimization (Patton, 2004);
the processes of multidimensional control and hydrological modeling
(Yan, 2006; Genest and Faure, 2007);
twodimensional storm surges analysis (Ciupak and Rokiciński, 2011);
modeling the dependence of the prices of futures contracts on
agricultural products (Hołda and Malik, 2013).
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The problem of non-normality of random effects -
copula function (3)
Gaussian copula

(Source: own elaboration)
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The problem of non-normality of random effects -
copula function (4)
t copula

(Source: own elaboration)
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Results - part I

Table 1. The values of probabilities of type I errors.

norm exp gam
LRT PB LRT PB LRT PB
0.042 0.036 0.053 0.042 0.050 0.044

(Source: own elaboration)
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Results - part II

Table 2. The values of probabilities of type II errors.

mvnorm normcop.exp tcop.exp normcop.gam tcop.gam
ρ LRT PB LRT PB LRT PB LRT PB LRT PB

-0.9 0.000 0.000 0.000 0.000 0.002 0.001 0.476 0.516 0.521 0.556
-0.6 0.006 0.006 0.029 0.032 0.122 0.127 0.717 0.744 0.800 0.831
-0.3 0.442 0.447 0.626 0.644 0.653 0.662 0.952 0.957 0.901 0.898
0.3 0.397 0.414 0.549 0.553 0.459 0.467 0.691 0.693 0.460 0.461
0.6 0.001 0.004 0.025 0.022 0.041 0.043 0.151 0.156 0.144 0.147
0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

(Source: own elaboration)
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Conclusions - part I

In the simulation study we show that for the considered real data and
model (6):

parametric bootstrap test gives lower values of the probability of
type I errors than Likelihood Ratio Test;
considered tests are quite robust on non-normality of random
effects if assumption about the lack of correlation is fulfilled;
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Conclusions - part II

Obtained results show that:

for moderate and strong correlation considered tests have good
properties - low values of the probability of type II errors, except
some cases with marginal gamma distribution of the random effects;
if random effects have multivariate normal distribution the power of
the considered tests is higher than 0.5 even for the weak correlation.
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for Your attention
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